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Abstract - An intelligent system for monitoring the
microgravity environment quality on-board the International
Space Station is presented. The monitoring system uses a
new approach combining Kohonen 's self-organizing feature
map, learning vector quantization and back propagation
neural network to recognize and classify the known and
unknown patterns. Finally, fuzzy logic is used to assess the
level of confi'dence associated with each vibrating source
activation detected by the system.

I. INTRODUCTION

Starting with Flight 6A (STS-100) in April 2001, the
International Space Station (ISS) will become scientifically
operational. It will provide the scientific community with
much longer periods of microgravity condition compared to
the US Space Shuttle. The Principal Investigator
Microgravity Services (PIMS), part of the Microgravity
Measurement and Analysis Project (MMAP) at the NASA
Glenn Research Center (GRC), has the responsibility for
measuring, analyzing, and characterizing the microgravity
environment on-board the ISS since many of the experiments
conducted on the ISS require the knowledge of the
microgravity environment quality for accurate analysis of the
science experimental data.

The main objective of this work is to develop an intelligent

monitoring system, which not only can classify incoming
signals into known patterns, but also identify the unknown
ones, in near real time. Since the ISS is being built in
increments, its fundamental frequency will change some until
assembly is complete. Thus, identifying the unknown
patterns is as important as the known ones. The monitoring

system is fully automated from analyzing the sensor data to
making the final decision as to what vibrating sources are
active, with some degree of confidence.

II. THE INTELLIGENT MONITORING SYSTEM

Currently, the acceleration data analysis and interpretation to
characterize the Space Shuttle and other spacecraft platforms
microgravity environment is performed by a PIMS data
analyst. The acceleration data received from the sensors are
in time domain. They are, then, transformed to frequency
domain by means of Fast Fourier Transform (FFT), from
which the so-called Power Spectral Density (PSD) is
generated. PSD is a function that quantifies the distribution
of power in a signal with respect to frequency, and it is used
to identify and quantify vibratory (oscillatory) components of
the acceleration environment. The major peak values of the
PSDs represent the fundamental or natural frequencies of
different vibrating sources, which are to be correlated with
the type of vibrating sources. Such analysis is time
consuming. To ease the analyst's work, it is desired to
automate the analysis process described above. Also,
automation will provide space-experiment principal
investigators (PIs) easy on-line access to the acceleration data
via the PIMS world wide web site, where they can see what
vibrating sources are active in near real time, which might
impact their experiments.

The intelligent monitoring system is designed to perform the

following four tasks:

(1) Detect the current vibrating sources on-board the ISS in
near real time (Source Detection)

(2) Classify known patterns (Pattern Classification)
(3) Recognize unknown patterns (Pattern Recognition)
(4) Assess the level of confidence associated with each

vibrating source activation (Confidence Determination)

The schematic diagram of the overall monitoring system is
shown in Fig. 1, and described in detail below.
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Fig. 1 The Overall Monitoring System

Source Detection

In terms of source detection, the system must automatically
detect the fundamental frequencies of the vibratory
disturbance sources from the acceleration data measured by
the accelerometers (sensors) located at different locations on-
board the ISS. The fundamental frequencies correspond to
the major peaks of the PSD data. A data point is considered
as a major peak only when its function value (the PSD value,
in this case) is significantly higher than the preset reference
value. The reference line is chosen as the slope line of a
group of data, from which a bandwidth (i.e. the deviation
from the reference value) is selected. Thus, a point that is
within the bandwidth is considered as noise. On the other

hand, a point that is beyond the bandwidth, and whose sign of
gradient changes from positive to negative, is considered as a
major peak.

Pattern Classification

On-board the ISS, there are many disturbance sources, such
as fans, pumps, life support systems, etc. For the purpose of
source classification, these disturbance sources need to be
identified as soon as they are detected. The well-known
Kohonen's Self-Organizing Feature Map (SOFM) [1] is used
to cluster the known patterns. A known pattern consists of
the nominal values of the previously measured frequency and
acceleration of an existing disturbance source. SOFM is a
special class of artificial neural networks. It is based on

competitive learning in which the output neurons compete
among themselves to be activated or fired, and the winner
takes it all. Furthermore, SOFM is characterized by the

formation of a topological map of the input patterns in an
unsupervised manner. The topological map allows one to
visualize the order of organized input patterns in the input

space.

The classification approach used in this work consists of
cluster and class (patterns) grouping. A cluster is a group of
data with the same classification features. In this case, a

cluster represents a group of measured frequency and
acceleration values of a single vibrating source, and the mean
value of this group is called the cluster center. Thus, each
cluster center contains a pair of data representing the nominal
fundamental frequency and the nominal acceleration values
of a known vibrating source. A class is formed by grouping
several clusters that share the same attributes into a group. In

other words, class is one level higher than cluster. Since the
ISS has multiple degrees of freedom, it possesses multiple
fundamental frequencies, known as structural modes. In this
case, several clusters represent the structural modes of the
ISS. These several clusters form a class. Likewise, the

harmonics of a vibrating source, which by themselves are
clusters, also form a class. Grouping clusters into classes is
accomplished by using Learning Vector Qantization (LVQ)
[2,3], which is a supervised learning technique. The strength
of LVQ networks is that they can be trained to recognize
classes made up of multiple unconnected regions, which
cannot be accomplished by SOFM. A multiple-unconnected-
region is referred to a class that contains both the
fundamental frequency of a vibrating source and its related
harmonics. The aforementioned ISS structural modes and its

harmonics is a typical example of such multiple-
unconnected-region. LVQ offers the advantage of grouping
several clusters into the same class (same source, in this
case).

Pattern Recognition

To prevent possible misclassification, the classified patterns
need to be verified. For each known pattern, the allowable
tolerance (deviation) range from the nominal values of
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frequencyandaccelerationarespecified.Thus,assoonasan
inputpatternisassignedtoacluster,averificationprocess
beginsbycheckingif thepatternfallswithinthemaximum
allowablerange(themaximumallowablerangeisknowledge
based.Forexample,theKubandantenna,usedbytheShuttle
forcommunicationanddatadownlinktoground,hasa
disturbancesignaturearound17Hzwithassociated
accelerationmagnitudelevelbetween100to300_grms.
Knowingsuchrangefrompastdata,anallowabledeviation
rangefromthenominalvalueisspecified,forexample,-+5%
basedonpastobservation.)Therefore,apattern,whichhas
beenclassifiedandverified,isrecognizedasaknownpattern.
Ontheotherhand,anypatternthatfallsoutsideofthe
allowablerangeisrecognizedasanunknownpattern
(meaningthatthesystemhasnotseenitbeforeortrainedyet
torecognizeit).

Thepatternrecognitionisaccomplishedbybuildingtwo
separatefiltermasksforfrequencyandacceleration.Each
maskcanperforminstantfilteringbymeansofneural
networkmapping.Themappingisaccomplishedbyusing
anotherclassofartificialneuralnetworks,called
backpropagationneuralnetwork(BPNN)[4],whichuses
supervisedlearningrules.A BPNNbasedonaGaussian
distributionwithrespecttothenominalvalueofanyknown
patternhasbeentrained.Thedistributionisboundedbythree
standarddeviations(+3o).Therefore,if afrequencyvalue
witha+5% deviation from the nominal frequency of a
vibrating source of interest is specified, the deviation is

equivalent to (+3o), likewise, for acceleration. It is
worthwhile to note that the BPNN was trained in terms of the

unit of o, which is dimensionless. Therefore, there is only

one trained BPNN for both frequency and acceleration.

To recognize a pattern, the BPNN generates the so-called
Degree of Belongingness (DOB) between 0 and 1 for both
frequency and acceleration. For instance, a value below 0.1
(using 3o) for either frequency or acceleration means that the

detected source does not belong to the cluster, and is
recognized as an unknown pattern. On the other hand, if the

detected frequency is exactly the same as the nominal
frequency, then the DOB value of frequency will be 1,
likewise, for acceleration.

Confidence Determination

The objective here is to provide an index, which gives a
relative assessment as to how confident the monitoring
system is regarding the determination of which source is
active at any moment in time.

On-board the ISS, there are many accelerometers with
different sampling rates. They may be moved to different
locations from time to time, and may or may not be located in

the scientific racks where the experiments are located.
Therefore, the locations of known sources, sensors and racks

should be known by the system. Such information is used to
design the decision- making process, which in turn generates
the confidence index.

It is very possible that the same disturbance source is detected
by more than one sensor. In this case, it is desired to
determine which sensor is most relevant to a specific
experiment. Instead of classifying the relevance as relevant
or irrelevant, it is quantified using the concept of partial truth.
As a result, the degree of relevance (DOR) is between 0 and
1, where 0 and 1 mean very irrelevant and very relevant,
respectively. The DOR between sensors and experiment

racks greatly depends on their geometric relationship.

To accomplish this, fuzzy logic [5] is used since it is suitable
for dealing with imprecision and uncertainty. Fuzzy logic

measures the truth of a given situation as a matter of degree.
Between the input and the output, there is a black box that
does the work through the use of if-then rules. The input for

the fuzzy logic contains membership functions of each input
variable, and the output also contains membership functions
of each output variable. In this work, there are three input
membership functions: the DOB of frequency, the DOB of
acceleration, and the DOR of sensors with respect to
experiment racks. The DOB and DOR values are both
between 0 and 1. The output membership function of fuzzy
logic is the degree of confidence (DOC), which is also

between 0 and 1, where 1 represents 100% confidence that a
source of interest is active, and 0 means that the source is not.

An example of a fuzzy logic rule for a sensor is: if DOB is
high and DOR is high, then the DOC is high.

III. TECHNICAL NOVELTIES

In the course of developing the monitoring system, many
technical problems arose, but were overcome. Below we
briefly discussed how they were overcome and how the
process leads to some technical innovations (novelties) in the
field of pattern classification.

(1) Generating Additional Dimension for Pattern
Classification

Generally speaking, the more dimensions used in pattern
classification, the better the classification will be. This is

simply because each pattern will have more distinct features.
In this work, however, once the acceleration data have been

transformed from time domain to frequency domain through
FFT, it is difficult to relate a detected fundamental frequency
magnitude level in the frequency domain to its corresponding
acceleration in the time domain. Such task is time consuming
and resource intensive in terms of storing and tracking data in
two domains.

NASA/TM--2002-211809 3



In the time domain, an acceleration magnitude value is the

combined effect of all vibrating sources at that instant of

time. Therefore, the acceleration values in the time domain

can not be used to identify which vibrating sources are active.

Consequently, source detection has to be made in the

frequency domain. However, it is necessary to know the

corresponding acceleration value for each detected frequency

in the frequency domain. To do so, one of Parseval theorems

[6] is used. The theorem states that there exists an

equivalence between the root mean square (RMS) value of a

signal computed in time domain to that in frequency domain.

The equivalent RMS acceleration can be calculated as

follows:

k

ARMS = [Z p(i)Af ]1/2

i=0

(1)

where k=0,1,2.,(n/2), n is the number of samples in the time

domain, p(i) is the PSD value at frequency f(i), and kf is the

frequency resolution

This theorem is used to attribute a fraction of the total power

in a signal to a user-specified band of frequencies by

appropriately choosing the limits of integration. However,

the theorem does not address what the appropriate limits of

integration are. In this paper, a procedure for quantifying the

RMS acceleration, which addresses the choice of the limits of

integration, is developed. It is described below.

Step 1: The PSD data around the frequency of interest are

reconstructed by a Gaussian distribution to minimize the

measurement noise. Conceptually, the standard deviation

((y) value of this distribution should be relatively small in

order to make a narrow band around the frequency of interest.

The cy value was determined by simulations using some sets

of previous Space Shuttle missions data in frequency domain

and time domain. For each data set, the error between the

estimated RMS acceleration from the frequency domain and
the actual RMS acceleration from the time domain was

compared while varying the cy value. As a result of the

simulations, it was found that setting the (y value equal to kf

yields the smallest error. The accuracy comparisons are

shown in Tables I and II.

Step 2: The reconstructed PSD data are integrated with

respect to frequency from fi-Af to fi+Af, where fi and Af stand

for the frequency value of interest and the PSD frequency

resolution, respectively. Such integration is essentially

equivalent to the hatched area shown in Fig. 2. Note that the

integration limits were determined by the simulations

mentioned above.
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Fig. 2 Integration of PSD Data with respect to Frequency

Step 3: The square root of the integrated result is taken. As a

result, the time-domain equivalent RMS acceleration (g) for

the frequency of interest is recovered.

This procedure was verified using two sets of the Space

Shuttle missions data in frequency domain and time domain

(for comparison). The accuracy of the acceleration

estimation for each set is given in the following two tables.

Table I Accuracy Comparison for the First Data Set

PSD
Data

Pxx

PYY
Pzz

Frequency Estimated RMS Actual RMS Difference

Resolution Acceleration Acceleration %

0.0305 Hz 0

0.0305 Hz

0.0305 Hz

1.9 milli-g

4.9 milli-g

1.0 milli-g

1.9 milli-g

4.8 milli-g

1.0 milli-g

2.1

Where Pxx, Pyy and Pzz are the PSD data in x, y and z axes,

respectively. Note that the above estimated RMS

acceleration values were calculated using the proposed

procedure based on the PSD data at 79.77 Hz, whereas the

actual RMS acceleration values came from the Space Shuttle

past mission data collected from sensors in the time domain.

Table II Accuracy Comparison for the Second Data Set

PSD
Data

Pxx

Pyy
Pzz

Frequency Estimated RMS Actual RMS Difference

Resolution Acceleration Acceleration %

0.0610 Hz 3.7

0.0610 Hz

0.0610 Hz

2.8 milli-g

1.4 milli-g

0.68 milli-g

2.7 milli-g

1.4 milli-g

0.68 milli-g

NASA/TM--2002-211809 4



Note: The above estimated RMS acceleration values were

calculated using the proposed procedure based on the PSD
data at 60.18 Hz.

Generally speaking, the actual acceleration magnitude
measured in the time domain is the combined acceleration of

all vibrating sources at that time. However, it is possible to
find a vibrating source that happens to be the only active
source at some instant of time. Such sources can be found in

the frequency domain by identifying the dominant PSD value
at some specific frequency such as 79.77 Hz or 60.19 Hz, in
this case. As shown in the above tables, the estimation errors
are quite small. This procedure was implemented for this
work. As a result, each detected fundamental frequency is
accompanied by the estimated RMS acceleration magnitude
to form a pair of data to be used for the pattern classification.

(2) Proper Scaling with Multiple Dimensions

SOFM uses Euclidean distance to measure the distance

between an input pattern and the cluster center of interest.
For example, the Euclidean distance in two-dimensional
space is defined as

D = [(Xl-Xl,c) 2 -t- (x2-X2,c) 2 ] 1/2 (2)

Where x1and x2 are the values of the input pattern in
dimensions 1 and 2, respectively, and Xl,c and X2,care the
cluster centers in dimensions 1 and 2, respectively. In this
work, the two dimensions are the frequency and acceleration
magnitude. Therefore, the Euclidean distance of an input
pattern (f, a) to a cluster center (fc, ac) can be expressed as

D = [(f_fc)2 +(a_ac)2]m = [Af2+Aa2] ½ (3)

Since SOFM uses Euclidean distance for classification,

improper scaling between these two dimensions could lead to
misclassification. For example, given the following two
cluster centers, whose units are Hz and g:

Cluster Cluster Range for the
No. center 1st dimension

n (71,50 _) 69.6-72.4
n+l (72,40 _) 70.6-73.4
Where * denotes 10.6

Range for the
2 nd dimension*

40 - 60

20 - 60

If a source is detected at 71.8 Hz and 46 micro-g, for
example, then without proper scaling the data point will be
classified into cluster n+l because the first dimension

(frequency, in this case) is much more dominant than the
second dimension (acceleration) that results in the shortest
Euclidean distance between the detected source and cluster

n+l (see Eq. 3). In this case, the Euclidean equation
degenerates from 2-D to 1-D. However, if a scaling factor of

2x105 were applied to the second dimension (i.e., the values

of acceleration are multiplied by this factor in order to
generate an equally weighted scale to preserve the two
dimensionality of the data), then the same source would be
classified into cluster n, which is correct because the
Euclidean distance is the shortest, and both dimensions are

equally weighted. It is very important to have Af and Aa
(equation 3) to be of the same order of magnitude. Otherwise,
one dimension alone will dictate the selection of the cluster,

which will result in patterns misclassification.

(3) A Modified Model for Pattern Classification and
Recognition

SOFM classifies every input data point into one of the
established cluster centers. By default, the boundary between
any two adjacent clusters is essentially located in the middle

of the two cluster centers, (see Boundary n_l,i_the boundary

between clusters n-1 and n, and Boundary n,n+l_he boundary
between clusters n and n+l, Fig. 3).

dimension 2

Boundary n-l,n Boundary n,n+l

_ Cluster center n /

_Y) _/

& c+en .l
dimension 1

Fig. 3 Cluster Centers and Their Boundaries

Therefore, any point, such as P(x,y) (marked by "*") that falls

within the region between boundary n-l,nand boundary n,n+l
belongs to cluster n.

Let's Suppose that cluster n has a range in each dimension, as
enclosed by the rectangle around the cluster center (see Fig.
3), any point that falls outside the rectangular region, but still

between boundary n-l,n and boundary n,n+l,should not be
classified into cluster n. In fact, it should be classified as an

unknown pattern. Unfortunately, SOFM has no such ability.
Lippman [7] proposed an approach to combine SOFM and
LVQ in order to place the input vectors into the desired
classes. His approach enhanced the capability of pattern
classification. However, it still can not recognize unknown
or new patterns. To address these shortcomings, a hybrid
model is proposed in this paper. This model, as shown in

NASA/TM--2002-211809 5



Fig.4,combiningSOFM,BPNNandLVQ, is referred herein
as Adaptive Pattern Recognition and Classification (APRC).

In this proposed model, BPNN is inserted in between SOFM
and LVQ for unknown patterns recognition, while SOFM and
LVQ are used solely for the classification of known patterns.

[NpLiI

VECTOR

Fig. 4 Adaptive Pattern Recognition and Classification
(APRC)

(4) Taking into Account Multi-Dimensional Ranges of
Neighboring Clusters

In multi-dimensional space, each cluster may have a different
range in each dimension, as shown in Fig. 5. In this case, the
Kohonen's SOFM [1] will classify the data point P(x,y) into
cluster n due to the shortest Euclidean distance between the

point and the center of cluster n (even though that data point
belongs to cluster n-l). However, in the APRC model, since
the point falls outside the specified range of each dimension
of cluster n, that data point will be placed on hold until the
ranges of the neighboring cluster (cluster n-l, for instance)
are checked. As a result, the data point will be classified into
cluster n-1 as a known pattern. Without the multi-
dimensional neighboring cluster checking feature of APRC,
the data point would have been classified as an unknown
pattern, which would have been incorrect. The proposed
APRC model has the ability to avoid such possible
misclassification in multi-dimensional space for clusters with
cross-boundary range overlapping.

In multi-dimensional space, this type of misclassification
could occur even with proper scaling among dimensions.
The problem is essentially due to the different dimensional
ranges for each cluster when two cluster centers are close to
each other. The only remedy to this problem is to check the

neighboring clusters in each dimension. In this monitoring
system, neighboring cluster checking was implemented using
BPNN, which compares every unknown pattern with the
neighbors of the rejected cluster to make sure that the
unknown pattern, in fact, does not belong to any of the
surrounding clusters.

dimension 2

Boundary 11-1,11 Boundary 11,11+1

X Cluster center n/

/
Cluster]\'1 /
center n:,,_. ]_d ' I /

÷&:ent51
dimension 1

Fig. 5 Multi-Dimensional Ranges for Each Cluster

In summary, the proposed APRC used in this work is
superior to the Lippman's model [7] in the following aspects:

(a) Can recognize unknown patterns
(b) Can avoid pattern misclassification
(c) Takes into account multi-dimensional ranges of

neighboring clusters

IV. APRC PROCESS

Fig. 4 shows the schematic diagram of the APRC approach.
The procedure of the approach is described below in detail.

The program begins by retrieving PSD data sets generated
from the real time acceleration data downlinked from the

International Space Station (ISS) to perform peak detection.
For each detected relevant peak, the program uses the
modified Parseval theorem to estimate the RMS acceleration,

from which the acceleration magnitude level from the time
domain is calculated, for each detected frequency.
For each pair of acquired parameter detected (frequency and
acceleration), the program uses SOFM to screen each set by
assigning it to some potential cluster. (Remember that SOFM
uses Euclidean distance for classification. Thus, if it is used
alone, it could lead to patterns misclassification.)
To overcome the weakness of SOFM, the program then uses
BPNN to check if the detected pair falls within a prescribed
range (for both frequency and acceleration). BPNN either
affirms or rejects the preliminary clustering made by SOFM.
If it affirms it, the pair is left in the assigned clustered.

NASA/TM--2002-211809 6



Otherwise,BPNNperformscluster-neighboringchecking.If
amatchedisfound,thepairisremovedfromthepreliminary
assignedclusterandreassignedtothenewclusterbySOFM.
If nomatchisfound,theclusterisremovedfromthe
previouslyassignedclusterandtransferredtoadatabase
reservedforunknownpatternsforfurtheranalysisand
possibletraining.Oncethepairisaffirmed,SOFM,sendsit
toLVQ,whichclassifiesthepairaswellasmatchingthe
value(frequencyandacceleration)ofthepairwiththename
ofthepattern,(forexample,fanorpump)intheknown
database.Once,thenameofthepairisidentified,the
vibratingsourcenamealongwithitsvalueissenttothe
PIMSwebsitefordisplayandviewingbyprincipal
investigatorteams.

V. SIMULATIONCASE

Atthetimewhenthissimulationwasperformed,norealtime
accelerationdatawasavailablefromtheISS.Therefore,the
monitoringsystemwassimulatedusingtwosetsofdatafrom
previousSpaceShuttlemissions,andtwosetsofdatafrom
previousNASAmissionsontheRussianMIRSpaceStation.
Forthesefoursetsofdata,theprogramcorrectlydetectedthe
fundamentalfrequenciesofthevibratorydisturbancesources,
recognizedandclassifiedthemintotherightclustersand
classes.

Theresultofthesimulationisdiscussedindetailbelow.
Forthesimulationadatabasewascreatedcontaining43
clusterssimulatingknownpatternstothesystemand15
classessimulatingthevibratingclassestowhichthe43
clustersbelongedto.Thesimulationstartedwithpeak
detectionofallthethreeaxesPSDdatageneratedfromthe
fourpreviousmissionsmentionedabove.TakingtheX-axis
PSDdataasanexample,intherangeof0to200Hz,58
peaks(clusters)weredetected.Outofthese58peaks,the
programrecognized24asknownpatternsand34as
unknown.Thereasonalargenumberofunknownswere
detectedisduetothefactthatthetrainedpatterns(storedin
thedatabaseasknownpatterns)weremostlybetween0and
100Hz.Onlythreeknownpatternswereover100Hzinthe
database.

AssoonasapeakfromthePSDdatawasdetected,the
modifiedParsevaltheoremwasusedtocalculatetheactual
accelerationmagnitudeassociatedwiththatpeak.For
example,apeakwasdetectedat38.0859Hz;theacceleration
magnitudewascalculatedtobe11.32Bg.SOFMtemporarily
assignedthepatternincluster17,whichhastheprescribed
rangeof38+5%forfrequencyand10to30Bgfor
acceleration.SOFMpassedthevaluesofthedetectedpeakto
BPNNforverificationinordertoavoidpossible
misclassification.BPNNcomparedthefrequencyand
accelerationvalueswiththenominalvaluesofcluster17(38
Hzand20Bg,respectively),anddeterminedtheDegreeof
Belongingness(DOB)forfrequencyandaccelerationas

0.912and0.034,respectively.Inthiscase,thefrequencyof
38.0859wasveryclosetothenominalvalue,whilethe
accelerationof11.32Bgwasjustslightlyabovetheminimum
acceleration10Bg.Thispatternwasconfirmedandthensent
backtoSOFMforfinalclustering.Sincebothfrequencyand
accelerationvalueswerewithintheprescribedranges,that
patternwasrecognizedasaknownpatternbelongingto
cluster17.Finally,SOFMpassedthatinformationtoLVQ,
whichdetermineswhichclassthatpatternbelongstoandits
actualname.Inthiscase,it wasthesignatureofafan
associatedwithanexperimentcalledglovebox.

Thisfollowingillustrateshowtheprogramwasableto
preventpatternmisclassification.Letusexaminethethree
knownpatternsintheneighborhoodof71and72Hz,shown
below.

ClusterNominal
No. Frequency(Hz)

29 71
3O
31

Maximum
Acc.(gg)

5O

Minimum
Acc.(gg)

4O
71 20 10
72 40 20

Theprogramdetectedarelevantpeakat71.2585Hzwith
calculatedaccelerationof38.6Bg.Initially,thispatternwas
temporarilyidentifiedasanunknownpatternbecauseit was
comparedwithcluster29.Theprogramthencheckedthe
firstneighboringcluster(cluster30),butthepatternwas
againrejectedbecauseitsaccelerationwasbeyondthe
prescribedaccelerationrangeofcluster30.Theprogram
checkedthesecondneighboringcluster(cluster31),and
successfullyrecognizedthepatternasaknownpattern
(cluster31).Thereasoncluster29waspickedastheright
matchatthefirstpassisbecauseSOFMusedEuclidean
distanceforclustering.AndsinceEuclideandistancefavors
theshortestdistance,therefore,thefirstchoicewascluster
29.IfonlySOFMwereused,thepatternwouldhavebeen
assignedtocluster29,whichwouldhavebeenthewrong
cluster,butsinceBPNNisusedtochecktheprescribedrange
aswellasneighboringclusters,twomistakeswereavoided.
First,amisclassificationwasavoided(cluster31insteadof
29).Second,insteadofclassifyingthepatternasan
unknown,it wasrecognizedasaknownoneduetothecluster
neighboringcheckingcapabilityoftheprogram

Forthissimulation,thetotalCPUtimefrompeakdetectionto
patternrecognitionandclassificationwasabout4secondsfor
eachaxisusingaPCwith500MHzclockspeed.The
simulationresultwasverifiedbyexaminingthe
correspondingcolorspectrogramsinx,y andz-axes,
respectively.A spectrogramisathree-dimensionalplotthat
showsPSDvalues(representedbycolors)versusfrequency
versustime.It isprimarilyforthepurposeofvisualization.
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Theresultshoweda100%successrateinrecognizingand
classifyingthedetectedfrequenciesandacceleration
magnitudesintoknownandunknownpatterns.Inthis
simulation,thedegreeofrelevanceforeachsensortoany
specificexperimentrackwasnottested.

VI.CONCLUSIONS

Themonitoringsystemdiscussedinthispaperhas
demonstrateditscapabilitytoautomaticallydetectthe
vibratorydisturbancesources,tocorrectlyidentifyand
classifythem.Theadaptivepatternrecognitionand
classificationapproachpresentedherehastheabilityto
recognizeandclassifyknownandunknownpatterns,aswell
aspreventingpossiblepatternsmisclassification.A
proceduretoquantifytheRMSaccelerationinthefrequency
domain,whichallowsforthecalculationoftheacceleration
magnitudelevelsinthetimedomain,wasdeveloped.The
accelerationmagnitudecalculationgivesSOFManextra
dimension,whichlessenstosomedegreesthepotentialof
patternmisclassification.Fuzzylogicisusedtoexploitthe
toleranceforimprecision,uncertaintyandpartialtruth,along
withtheexperienceofthehumanexperts(bymeansoffuzzy
logicrules),tomakeintelligentdecisionsastowhatvibrating
sourcesaremorerelevanttoaspecificsensor.
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